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Model representations of the diffusion of an impurity during heating are devel ~ 
oped in a relaxational approximation based on the thermodynamics of irreversibie 
processes. The calculations are compared with experimental data. 

Structural changes in steel that improve its service properties and an increase Jn the 
mobility of its atoms during thermocyclic loading can be used to improve chemicothermal 
treatment processes [1-3]. It has been established experimentally that given the same over- 
all time of diffusion saturation of steel specimens, the thickness of the resulting diffu- 
sion layer is considerably greater with the use of successive heatings and coolings o5 the 
metal than with isothermal holding [i]. 

Apart from accelerating diffusion, thermal cycling may influence the characteristic 
form of the concentration curves. Figure 1 shows certain characteristic distributions of 
carbon in the surface layers of specimens after thermal cycling. The distributions were 
obtained in a series of laboratory experiments andcommercial trials of thermocyclic cemen- 
tation and nitriding [3]. The temperature was changed by moving the charge containing the 
specimens from the hot chamber to the cold chamber or by changing the current supplied to 
the furnace heaters. The temperature was monitored with a chromel-alumel thermocouple em- 
bedded in the surface of the specimen. The chemical potential of the carbon in the gas 
phase was controlled with the aid of an electrochemical sensor by adding methane to th~ 
furnace gases. The carbon content of the surface layers of the metallic specimens was de- 
termined through layer-by-layer chemical analysis. 

The experimental data was compared with estimates of carbon distribution through ~he 
specimen thickness obtained from the solution of parabolic [4] and hyperbolic [5] diffusion 
equations with boundary conditions of the third type. Here, the mass-transfer coefficient 
6" was determined by a nonsteady method, while the effective diffusion coefficient was de- 
termined by the method recommended in [i] for thermocyclic cementation. For the regimes we 
examined, 6" = 5.25"i0-s m/sec and D = 1.78"i0 -II m2/sec. The relaxation times entering 
into the hyperbolic equation were found by numerical modeling on the basis of the best 
agreement between the theoretical relations and experimental data. 

It is evident from the figure that the hyperbolic equation describes the empiricai data 
considerably better than does the parabolic equation. 

When a phenomenological approach is used, hyperbolic equations of heat conduction and 
diffusion are obtained as a result of allowing for relaxation in heat and mass transfer pro- 
cesses and the finite velocity of propagation of the thermal and concentration fronts 14-6]. 
Here, the diffusivity or diffusion coefficient and relaxation time that enter into the equa- 
tions are phenomenological coefficients which are assumed to be known. If necessary, they 
can be found experimentally. The phenomenological description of transport processes Js 
fairly inexact. A more detailed description requires the use of model representations of 
processes taking place at the level of the microstructure of the system. When diffusicn in 
metals in the presence of strucutral defects was modeled in [7], the defects were assuxed to 
have been macroscopic or point traps capable of absorbing atoms of a diffusing impurity and 
holding them for a certain period of time. This approach leads to diffusion equations of a 
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Fig. i. Carbon concentration field after thermocyclic 
cementation with Tfurn = 910~ t = 4.67 h (~ = 1.259, 

= 1.64, ~ = 1.024 104 sec) (a) and Tfurn = 900~ t = 
2.5 h (~ = 0.697, �9 = 2.87, ~ = 3.136"103 sec) (b): i) 
dashed curve - estimate obtained from (20); solid line - 
result obtained from the exact formula in [5]; 2) solu- 
tion of the parabolic diffusion equation, y, mm. 

more general form. The approximate character of the description in this case also leads to 
equations of the hyperbolic or elliptic type (depending on the relaxation times). 

Thermocylic loading has its greatest effect on the material when phase transformations 
take place [i]. In this case, there is a change in the structure of the metal (refinement, 
reshaping, and reorientation of the grains), a change in the chemical or phase composition 
(such as the dissolution or precipitation of excess phases), and the creation and relaxation 
of internal stresses. 

Thermocyclic loading which occurs with a complete phase transformation during the 
cementation of steels leads to an increase in the diffusional mobility of carbon by a fac- 
tor of 2.5-3.0. 

Proceeding on the basis of literature data and their own experimental results, the 
authors of [i] concluded that the acceleration of diffusion is due to the nonequilibrium 
state of the metal and features of its structure. There have been attempts to link the ac- 
celeration of diffusion with the creation of thermal stresses during thermal cycling. Sev- 
eral researchers have attributed the phenomenon of accelerated diffusion mainly to grain 
refinement and saturation of the metal by defects - vacancies and dislocations [2, 8-10]. 

The conclusion that vacancies and dislocations are in large part responsible for diffu- 
sion during thermocyclic loading is supported by the results obtained in [11-15] for iso- 
thermal conditions. Also, it follows from the survey [16] that there should be a sharp 
change in vacancy concentration during phase transformations. However, in the opinion of 
different authors, defects can both speed up and slow down diffusion [i]. All of these ques- 
tions require further study. Thus, the wide range of phenomena accompanying diffusion and 
the impossibility of currently establishing a governing mechanism in the acceleration of dif- 
fusion during thermal cycling make it difficult to construct a rigorous quantitative theory 
that will account for the effect of all significant physical processes and, thus, all of the 
regime parameters in chemicothermaltreatment on the diffusion saturation of metal by dif- 
ferent elements. 

Consequently, when developing mathematical models, it is interesting to consider phe- 
nomenological approaches based on the thermodynamics of irreversible processes and, in par- 
ticular, its relaxational formalism [17, 18]. 

Using the approach taken in [19], we will examine the effect of thermal loads on dif- 
fusion. We will assume that a change in specimen temperature generates an internal process 
~(t) in the metal which influences the diffusion of an impurity and obeys the kinetic equa- 
tion 
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()~ --  L~A. ( 1 )  
at 

Under i s o t h e r m a l  c o n d i t i o n s ,  A = 0, $ = 0. Assuming as  u s u a l  [17]  t h a t  t h e  e n t r o p y  o f  t h e  
s y s t e m  depends  on t h e  p a r a m e t e r s  c h a r a c t e r i z i n g  t h e  e q u i l i b r i u m  s t a t e  and t h e  q u a n t i t f  r - 
s = s ( u ,  c ,  ~ ) ,  and e x p a n d i n g  s i n t o  a s e r i e s  in  t h e  n e i g h b o r h o o d  o f  t e m p e r a t u r e  T o w i t h  
s e c o n d - o r d e r  a c c u r a c y  r e l a t i v e  t o  t h e  t e r m  c o n t a i n i n g  ~, s = s ~  c )  - 1 /2g$  : ,  wher,~, g = 
--(8~s/852) ~ , after differentitatingswith respect to time t we obtain: 

_ _  _ ~s  ~ ac ~ as _.Os ~ ~a -F g~ (2) 
0r at, a t  ac 9l ~t 

The partial derivatives in (2) are calculated at T O and can be found from Gibbs' fund~unental 
equation Tds = du - ~dc: 

Os o _ 1 - - 0 %  as o __ ~o 

Ou T O Oc T O . . . . . . .  t~'~~ ( 3 ) 

The l o c a l  r a t e s  o f  change  o f  t h e  p a r a m e t e r s  obey  t h e  b a l a n c e  e q u a t i o n  

a~ : - v  Jr  @ a~, (4 )  
at 

where  q~= (s, u, c), J ~ :  (Js, Ju, J~). 

Sources are absent, o u = o c = 0, from the balance equations for mass and internal en- 
ergy. We will assume that the system allows the isolation of fast and slow variables [18], 
i.e., the inequalities ~q << T$ < ~D exist for the characteristic times of diffusion aJld 
heat conduction in the internal process. The behavior of the system at times exceedi:~g Tq 
is determined by slower processes involving relaxation and diffusion [18]. This makes it 
possible to use the steady-state balance equation for internal energy xTJu=VJ~ = 0 for the 
more rapid process of heat conduction. Thus, thermal loads influence diffusion through the 
internal process $(t) with the generation of defects in the specimen, Having represented 

the entropy in (4) in the form j~J_!q-- ~Jc =~0jq__~Ojc ' after some elementary transformations 
To T 

we find the following expression from (2-4) for the entropy production 

a~ ---- --(~ --/~o~o) V J~ -- J~ V ( ~ )  -- g~ O~ (5 )  

For diffusion under isothermal conditions, ~ = 0. Thus, it is quite natural in a linear ap- 
proximation to put ,~O--~~176176 With allowance for the last relation, entropy produ:tion 
(5) takes the form 

o~ s = --?0 ~ -- g~ 8~ J~V (, t~~176 + ?0~ �9 
at (6 )  

In accordance with'the Curie principle, Eq. (6) leads to linear phenomenological laws :for 
the vector process of diffusion and the scalar internal process characterized by the parame- 
ter ~(t): 

Equation (8) 

at 
at 

is a special case of (i) 

J~ = - - L O ~  (~ t~ )< ~i~), ( 7 ) 

-- L ~ - ~  - -  ?~~ (8 )  

in which the quantity A is expanded into a serie~ in 
ratios of the parameters of the initial state with the temperature T o . The increase ir the 
diffusion coefficient during thermocyclic treatment was explained in [9] as being due to the 
interaction of atoms with vacancies -D = D~ + ~), where ~ is the vacancy concentraticn. 
The rate of change of ~ is described by an equation similar to (8). Here, the terms o~ the 
right side play the role of vacancy sources and sinks. The authors of [9] numerically in- 
tegrated the local vacancy balance equation together with the equations expressing the dif- 
fusion of impurity atoms and vacancies. The diffusion problem examined below is reduced to 
a single equivalent equation. 

Since the quantity $ in (7) characterizes the contribution of the internal process ~(t) 
to the chemical potential, VJc in (8) is a certain function of the concentration of diffus- 
ing atoms ~~ L~g-J-~T *-~, T is the relaxation time. Considering this and having sub- 
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jected (7) and (8) to Fourier transformation with respect to t (and keeping the same notation 
for the transforms as for the original), we obtain (7) without modification and we replace 
(8) with the expression 

( l+ i~x* )~  ..... ?~*g-qp. (9) 

Having excluded ~ from (7) by means of (9), we find 

Jc ----- --L~}~ (F ~ + ?Z~*g-l~/(l + ir 

If we consider that VF~ ~Ocl ( 0~ ~0VC ' V~ = (~_~)" 0cp Vc , the flux can be represented in the form 

of Fick's law with an effective diffusion coefficient 

[ -  ~ ] , D  O O~ ~ J c = - - D v c ,  D = D  O l + ( l + i o * * )  = L~~ Oc ' 

_ ( ( l O )  

g \ a ~  ! 

The same express ion  f o r  the d i f f u s i o n  c o e f f i c i e n t  D(m) can be ob ta ined by us ing  the opera tor  
r e p r e s e n t a t i o n  i n t roduced  i n  [ 20 ] .  We w i l l  hence fo r t h  examine the  s imp les t  case, when D o i s  
independent of c. Using (10) in the mass balance equation (4), written for the Fourier 
transforms i~c = -VJc, we find 

tcoc + (io)Zx*c = D O (I + ~ + ioz*) V~c. ( 11 ) 

Cons ider ing  t h a t  (1 + i ~ * / ( 1  + 6) ) -1  ~ 1 - i~z~/ (1  + 6) ,  and l i m i t i n g  o u r s e l v e s  in t he  l e f t  
side of (II) to terms that are quadratic with respect to ~, we change this equation to the 
form 

6 
i~c + (t'c~ = D~ + ~)VzC" (12) 1 + 8  

Having designated ~*,(6/i + 6) = ~ and returning to the originals, we obtain the hyperbolic 
diffusion equation 

ac a~c 
q- *~ == D ~ (1 q- a) VZc. ( 13 ) 

at aL ~ 

As was already noted, another approach to describing diffusion in the interaction of 
atoms with defects is based on representation of the defects as macroscopic or point traps 
[7]. The kinetics of mass transfer on the surface of a trap is described in accordance with 
the classical theory of Smolukhovskii with allowance for the effect of relaxation processes 
on the capture and emission of impurity atoms by traps. The effect of the details of this 
mechanism on the macroscopic diffusion process is studied by means of self-consistent field 
theory. Description of the absorption and emission of diffusing atoms by defects in a re- 
laxational approximation leads to an elliptical or (as in the case examined above) hyper- 
bolic equation of unsteady diffusion. Here, the type of equation which results depends on 
the relaxation times. The exact solution obtained in [5] for (13) for a semi-infinite body 
with boundary conditions of the third type is quite complex in form and contains modified 
Bessel functions, thus requiring the use of numerical methods for practical calculations. 
It is therefore interesting to consider simpler approximate solutions that can be found by 
variational methods [21, 22]. Steady-state values (6I = 0) of the functional 

I =  oco , f oc ~  
�9 x Or 2 ~" -~*]  Ox z J dxdx, (14) 

where C O is a nonvarying function which after variation is identified with the sought C = 
C o , correspond to the Euler-Lagrange equation 

a c  a2c d~C 
+ ~  = ~ ,  (15)  

O'c 8.~'a Ox 2 

which is represented by dimensionless expression (13) for a unidimensional problem, Here, 
C= (c--co) I (cg-c0), x=v/ j /b -~=y/ym o (1 +6) % x =  t/x~, 

We w i l l  examine the  f u n c t i o n  C = exp [ - a * ~ ] f ( x )  as a t e s t  f u n c t i o n .  I n s e r t i n g  i t  in to  
(14) and va ry ing  f ,  we o b t a i n  
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!!F ] 81 = - -  [--~x2 + ~ * ( t  + ~ , ) [ 0  exp[--2=*~] 6[dxdz = O, (16)  

f rom which  f o l l o w s  t h e  e q u a t i o n  t o  d e t e r m i n e  f ( x )  = f 0 :  

~- - f - f - -k~*( l§  = O. (17)  
dx 2 

With allowance for the solution of this equation and the choice of test function when ~ = 

-~* < 0, we have 

sh [3/~ (1 - -  ~) (~ - -  x)] (18)  

In determining the constant of integration in (17), we used the condition at the front C(x, 
T)x= ~ = 0 and a boundary condition of the third type on the surface of the specimen 

( OC ) = ~ [ C ( O ,  ~)- -1] .  (19)  

In  t h e  c a s e  o f  s m a l l  v a l u e s  o f  t h e  a rgument  (oh  z z 1, sh  z z z ) ,  t h e  s i m p l e  r e l a t i o n  below 
f o l l o w s  f rom (18)  

C(x, J =  x). (20) 
I 

Variational methods can also be used to determine the correction factor. It should be noted 
that (20) coincides with the zeroth-approximation function when the diffusion equation is 
solved by the Shvets method [23]. 

Figure 1 shows experimental data on the carbon distribution through the specimen thick- 
ness as a result of ehemicothermal treatment. The results are compared with the resl~its 
of calculations by approximate formula (20) and results obtained on the basis of the ~xact 
solution of (15) in [5]. It is evident that both the exact and the approximate solutions 
of hyperbolic equation (15) describe the experimental data better than does the commorly- 
used parabolic equation. Highly-simplified formula (20) approximates the experimenta] data 
with an accuracy sufficient for practical purposes. 

Changing over in (20) to dimensional variables 

C - -  Co = ~* (t - -  y / V D T ~ ) ,  ( 21 ) 

we obtain a simple relation between parameters of the model which allows the parameters to 
be estimated on the basis of experimental data. 

In conclusion, we note that instead of the linear relation ~@_~0~0~_~ we can use 
the more general relation ~--~~176 where the quantity A depends on the thermal stcesses 
which develop in the specimen. Thus, the model constructed above can be refined by uskng 
available data on the connection between defect concentration and stresses. Another import- 
ant problem is making the model account for regime parameters of the thermocyclic trea<ment 
- the number of cycles, their duration, and the duty factor. 

NOTATION 

$, relaxation parameter; A, affinity; g = -(82s/852) ~ quantity introduced in (2) u, 
internal energy; c, impurity concentration; D, chemical potential of impurity; o s, ent~:opy 
production; cp, heat capacity; A,J~,Jc flows for entropy, heat, and the impuritiy; Tq, T$, 
TD, characterlstic times of the processes of heat conduction, relaxation, and diffusion, re- 
spectively. 
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EFFECT OF RE-EVAPORATION ON THE UNIFORMITY OF 

THE THICKNESS OF A FILM 

I. A. Volchenok and G. E. Gorelik UDC 533.5 

With complex kinematics characterizing the motion of the evaporator-substrate 
system, numerical modeling is used to study the effect of re-evaporation on the 
distribution of film thickness on the substrate. 

The application of thin coatings by evaporation and condensation in a vacuum is usually 
done at pressures at which it is possible to ignore collisions among the molecules of the 
material being deposited and between these molecules and molecules of the residual gases. 
In such a free-molecular regime, the thickness of the film formed at point p of the sub- 
strate during the time �9 is determined by the expression [i]: 

= 1 ~ dm ~ cos~p(t) cos~p(t) dt= 1 ~ dm Up, (1) 
dp (~) 

Pz dE ~o ~r~(t) Pz d* 

where r :and Op a re  the  ang les  of  e v a p o r a t i o n  and condensa t ion ;  dm/dt = S i p i c i  exp (-MILl/  
RT I )  i s  t he  r a t e  of  removal of  m a t e r i a l  from the  s u r f a c e  of  t he  e v a p o r a t o r ;  R i s  t he  gas 
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